Prof. Richard Laine学术报告
报告题目:
Sodium vs. Lithium Batteries. Towards an All Solid-State Sodium Ion Battery
报告人:
Prof. Richard Laine,University of Michigan Ann Arbor,talsdad@umich.edu
时间:
2018年4月16日(周一)上午9:30
地点:
徐祖耀楼500会议室
联系人:
邹建新老师
报告人简介:
Richard Laine,美国密西根大学材料科学与工程系教授、高分子科学与工程中心主任、美国Mayaterials有限公司执行总裁。1969年于美国加利福尼亚州立大学获化学学士学位,1973年于美国南加利福尼亚大学获化学博士学位。主要从事有机-无机杂化材料的研究,包括有机金属化合物、有机金属高分子和氧化物纳米材料的合成工艺及光电性能、稻壳灰制备多功能POSS纳米结构单元、离子电池固态电解质等。已在Nature、Nature Mater.、Adv. Mater.、Angew. Chem.、JACS等国际著名期刊发表SCI论文250余篇,其中IF>10的30余篇。撰写和参编专著15部,申请专利45项,特约讲学/会议邀请报告280余次,原任美国化学会Macromolecules (IF=5.9)期刊编委,现任Polymer International(IF=2.4)期刊编委。
摘要:
Sodium vs. Lithium Batteries. Towards an All Solid-State Sodium Ion Battery
β‘’-Al2O3 is used commercially as a Na+ conducting ceramic electrolyte for its high ionic conductivity (0.2-0.3 S cm-1 at 300°C) and low materials‘ costs. However, for batteries usingβ’‘-Al2O3, about half of the cell resistance arises from the electrolyte itself because traditionally processed electrolyte materials are 1-2 mm thick. One can anticipate dramatic drops in cell resistance at thicknesses <100 ?m. However, the traditional high sintering temperatures of 1600°C/0-4 h cause rapid and excessive Na2O loss driving formation ofβ- rather thanβ’‘-Al2O3 lowering ionic conductivities limiting final properties.
Known methods ofβ’‘-Al2O3 sintering commonly involve covering the sample with the same powder to reduce Na2O loss. The quality (phase, particle size, particle morphology, etc.) of the starting powder has been shown to have a strong effect onβ’‘-Al2O3 sintering behavior.
In line with our latest success using flame made nanopowders (NPs) to minimize the external energy input for sintering Li7La3Zr2O12, the Li+ conducting ceramic electrolyte known for its difficulty in sintering, we show that the same approach can be used to process Na+β’‘-Al2O3. In this study,β’‘-Al2O3, TiO2 and ZrO2 NPs were produced by liquid-feed flame spray pyrolysis (LF-FSP). The NPs were then processed to green films (80 ?m) by tape casting generatingβ’‘-Al2O3 thin films on sintering.
As expected, superior densification ofβ’‘-Al2O3 films occurs with increasing TiO2 wt. %. Near full densities are reached at≥1360°C/2 h. Howeverβ’‘-Al2O3 content reaches only ~65 wt.% and the orientation of the c-axis is perpendicular to the film surface per XRD. The preferred conduction plane is perpendicular to the c-axis reducing net conductivity. Also, the large grain sizes seen in the 2 and 3 wt. % TiO2 samples suggest liquid phase sintering. Thus further efforts were explored to perturb grain reorientation during liquid phase sintering, and also pin grain boundaries to reduce grain growth that also reduced Na2O loss rate by reducing surface exposure ofβ’‘-Al2O3. These efforts will be described as well as methods to sinterβ’‘-Al2O3 at 1320°C, the lowest ever reported providing superionic sodium ion conductivities at room temperature. Symmetrical Na/β’‘-Al2O3/Na cells offer room temperature performance pointing the way to all solid state, thin-film Na batteries.
Work supported on NSF subcontract from Na4B to University of Michigan and by a gift from Mercedes-Daimler.